ANTIMICROBIAL ACTIVITY OF HYPERICUM PERFORATUM ESSENTIAL OIL

VESNA KALABA1 JOVANA GLUSAC2, MILKA STIJEPIC2, DRAGANA KALABA3, DRAGICA ĐURĐEVIC4

1PI Veterinary Institute of the Republic of Srpska “Dr Vaso Butozan” Banja Luka Republic of Srpska, Bosnia and Herzegovina
2School of Applied Medical Science, Prijedor
3Faculty of Medicine-Department of Pharmacy, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
4MP Lab, MP Bio d.o.o., Prokupacka 41, 11000 Belgrade, Serbia

Corresponding author:
E-mail address:vesna.kalaba@yahoo.com

Abstract: European Centre for Disease Prevention and Control (ECDC) and World Health Organization (WHO) initiate public awareness campaign about antimicrobial substances and their rational uses due to the increasing prevalence of multidrug resistant strains of bacteria. The objective of this study was to evaluate antimicrobial activity of Hypericum perforatum essential oil and reference antimicrobial drugs against the growth of certain bacteria Staphylococcus aureus, Salmonella typhimurium i Pseudomonas aeruginosa.

Keywords: antimicrobial substances, antimicrobial activity, Hypericum perforatum, oleum hyperici.

Introduction

The usage of plants as medicine presents a very important phenomenon in the traditional medicine. By the time, almost all the folklore claims on these species has been scientifically proved and their usage in medicine and related fields have been reported. Until the beginning of the twenty century, about 90% medical drugs were based on natural substances. Since olden times it is known antimicrobial activity of some plants (Borchardt et al. 2008). In recent years, it was shown about 78000 aromatic and medical plants (Kovačević 2010). More than 1340 plants are recognised as potential antimicrobial components source, but only small number of plants was investigated (Wilkins 1989).

Hypericum perforatum L. (Hypericaceae) or St. John’s Wort is one of the most popular medical plants worldwide. The genus Hypericum has about 400 species worldwide (Hickey et al., 1971). Hypericum perforatum L. is a perennial plant that bears extensive creeping rhizome with stem up to 1m high. The yellow flowers appear in broad cymes at the ends of the upper branches. Hypericum perforatum L. exhibits antibacterial, antiviral, antimycotic, anti-inflammatory and antidepressive activities (Singh Pal, 2006; Couceiro et al., 2006). Oleum Hyperici is obtained by maceration of the fresh flowering tops of Hypericum perforatum L. Hypericaceae (St. John’s Wort) in olive, sunflower or wheat-germ oil exposed to sunlight for 40 days.

Figure 1. Hypericum perforatum L. and Oleum Hyperici
Oleum Hyperici is widely used for its various significant therapeutic activities. It is used internally in official and folk medicine for the treatment of dyspepsia and topically for the treatment of open wounds and blunt injuries, myalgia, first-degree burns, haemorrhoids, as an antiseptic, for liver and stomach complaints, diarrhea, ulcers of the stomach and duodenum, intestinal catarrh, as an antiphlogistic agent in the treatment of inflammation of the bronchi and urogenital tract, treatment of biliary disorders, bladder irritation, etc. Furthermore, it is well know use of Oleum Hyperici in massage due to rheumatic diseases (Neuwald 1954, Yesiland et al. 1999).

Numerous compounds with documented biological activities have been reported from H. perforatum e.g. naphthodianthrones, hypericin and pseudohypericin, different flavonoids like quercetin, hyperin etc., phloroglucinols, essential oils and xanthones (Upton, 1997; Bystrov, 1975; Gurevich et al., 1971; Holzl et al., 1989; Kitanov et al., 1987; Rocha et al., 1995; Khosa et al., 1982; Weyerstahl et al., 1995).

Data concerning Oleum Hyperici chemical composition and pharmacological activity are limited. Studies proved the presence of red pigment-hypericin, pseudohypericin, flavonoids (quercetin, kampferol and biapigenin), tetrahydroxyxanthone and volatile oil (0.3%; main components of the volatile oil are aliphatic hydrocarbons, including, among others, 2-methyloctane, undecane, furthermore dodecanol, the prenylated phloroglucine derivative hyperforin and mono- and sesquiterpenes: including, among others, a-pinene, caryophyllene, additionally also 2-methyl-3-buten-2-ol). The H. perforatum (hyperforin) extracts effectiveness against methicillin-resistant Staphylococcus aureus and penicillin-resistant Staphylococcus aureus were previously reported ((Reechling et al. 2001, Mschempp et al. 1999.). Different phytochemical constituents of H. perforatum like xanthones and flavonoid - hyperforin have been shown to be effective antimicrobials, antivirals and antibacterials against gram-positive bacteria and gram-negative bacteria. Clinical results showed that Oleum Hyperici have been effective in the treatment of psychogenic disturbances, depressive states and/or nervous excitements, with fewer side effects (Mennini and Gobbi 2004, Bradley 2006, Bradley 2009, Wolf, 1993, Gudžić et al., 2001, Fox et al. 2001).

Several authors reported that essential oils increase bactericidal effects of antimicrobial drugs (Hubner 2003). Excessive use of antimicrobial drugs and food additives in control of human and animal disease and infection was resulted in appearance of resistant bacteria. Due to that, there is a need for development of natural protection for humans and animals from bacterial infections. Staphylococcus aureus, Salmonella typhimurium and Pseudomonas aeruginosa are the most common pathogenic bacteria that cause health and economical problems.

Salmonella spp. is a group of bacteria that can common cause of foodborne illness. In development European countries, Salmonella caused 84.5% of all epidemics and it is second pathogen in world that causes hospitalization adult persons (Linscott, 2011, Bacon, et al. 2003., Fratamico., et al. 2005., Sofos 2008.).

Staphylococcus aureus is a bacterium frequently found in the human respiratory tract and skin. About 25% healthy humans and animals are long-term carriers of S.aureus in nose. In different condition of temperature and pH some of strains of Staphylococcus aureus cause food poisoning due to secreting thermosstable enterotoxin. Stafylococcal toxin fast reacts. The first symptoms of poisoning appear 30 minutes to six hours after ingestion.

Pseudomonas aeruginosa is a Gram-negative opportunistic phatogen, widespread in nature, particularly in wet areas. This bacterium is well adapting to different environments conditions, such as natural and artificial environments, environment with antimicrobial drug, disinfectants or antiseptics. Previously was reported that Paeruginosa thrives on the moist surfaces, and it can survive more than month on the dry floor, on dry filer paper until 150 days, in water more than 300 days (Hurst 1966). Due to all this characteristics and reputation for being resistant to disinfection, this opportunistic nosocomial phatogen can cause a wide range of infections, and is a leading cause of illness in immunocompromised individuals. In particular, it can be a serious pathogen in hospitals.
Pseudomonas aeruginosa is the most common cause of infection of drinking water that is a significant route of transmission in hospitals. It is still not clear if the colonization results from the water in the distribution system, or personnel use within the hospital. It causes urinary tract infections, particularly (Balcht et all. 1994., Iglewski 1996., Anzai, et all. 2000., NNIS 1996). This illness are treated with antimicrobial drugs, but this treatment is often not effective due to appearance of resistant strains (Burnie et al. 2009., Mahboubi and Kazempour 2009., Nostro et al. 2004., Poole K., 2004).

Beside bacterial species with developed resistance to one class of antimicrobial drugs, today it is obvious an increase in number of multiresistant bacteria with resistance on several antimicrobial drugs, different in chemical content and mechanism of acting (Hayouniet all. 2008., Newell et all. 2010., Wright et all. 2009., Hachem et all. 2007).

The aim of this work is to investigate the influence of H. perforatum essential oil on growth of Staphylococcus aureus, Salmonella typhimurium and Pseudomonas aeruginosa in relation to activity of different antimicrobial drugs. Furthermore, the aim is related to examination whether H. perforatum essential oil has bactericidal or bacteriostatic activity on these bacteria.

Material and methods

H. perforatum essential oil
It is used Oleum Hyperici obtained by maceration of the fresh flowering tops of Hypericum perforatum L. Hypericaceae (St. John’s Wort) in olive oil exposed to sunlight for 40 days.

After 40 days, oil is filtered two times through the flax cloth, put into dark bothele, and stored in the dark place. Oleum Hyperici is used as a whole, mixed with 96% ethanol (1:1, and 2:1), and mixed with olive oil (1:2, 1:5 and 1:10).

Test microorganism and medium
For examination of antimicrobial activity of Oleum Hyperici it is used referent culture Staphylococcus aureus WDCM 00013, Salmonella typhimurium WDCM 0031 and Pseudomonas aeruginosa WDCM 00024 (BCCM™/LMG BACTERIA COLLECTION, Belgium). Strains are cultured in nutrition broth and incubated on 37°C/18h. Petri dishes with Müller - Hinton agar (Laboratorios CONDA S.A Spain) are inoculated with 0.1 ml bacterial suspension with concentration 10⁶ cell/ml.

Antimicrobial drugs
For examination of bacterial sensitivity on referent antimicrobial drugs, it is used antibiogram method. It is used discus papers for antibiogram with adequate antimicrobial drugs (“Liofilchem” s.r.l Italy): amikacin 30 μg, azitromicin 15 μg, cefotaxim 30 μg, cefuroxim 30 μg, ciprofloxacin 5 μg, chloramphenicol 30 μg, erythromycin 15 μg, gentamicin 10 μg, ofloxacin 5 μg, penicillin G 10IU, tetracycline 30 μg, vancomycin 30 μg, neomycin 30 μg.

Test method
For examination of Oleum Hyperici influence on inhibition of growth of Staphylococcus aureus, Salmonella typhimurium and Pseudomonas aeruginosa it is used diffusion method of essential oil with cilinder (diameter 9 mm). Cilinder was put on the surface of the inoculated medium (Müeller- Hinton- agar-MHA). 100μl of essential oil was dropped in cilinder by micropypet, while in control 100μl of 96% ethanol.

Beside essential oil, discus papers were put on plates as a referent antimicrobial drugs. Plates were incubated for 24h at 37°C
Statistical analyses
Each trial was repeated three times, and results were presented as a diameter of growth inhibition zones and values were expressed as mean in millimetres.

Type of acting
It is determined type of acting of essential oil. To examine whether *Oleum Hyperici* has bactericidal or bacteriostatic properties, small pieces of agar from the zone of inhibition was taken and transferred to the nutrition broth. Incubation was lasted for 24h at 37ºC. Bactericidal properties of *Oleum Hyperici* were defined as a clear nutrition broth after incubation. Bacteriostatic properties of *Oleum Hyperici* were defined as a turbid nutrition broth after incubation.

Results and discussion

<table>
<thead>
<tr>
<th>Antimicrobial drugs</th>
<th>Zone of inhibition in mm*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>Amikacin</td>
<td>16</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>25</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>26,6</td>
</tr>
<tr>
<td>Cefuroxim</td>
<td>30</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>25,6</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>20,6</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>28,3</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>26,3</td>
</tr>
<tr>
<td>Penicillin</td>
<td>33,3</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>25</td>
</tr>
<tr>
<td>Neomycin</td>
<td>18,3</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>30</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>14,3</td>
</tr>
</tbody>
</table>

* The showed values are mean values (in mm) of three repetition for inhibition zone.

Figure 2. Growth inhibition zone of Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa after treatment with antimicrobial drugs.
Cyprofloksacin induced the biggest zone of inhibition for the all three bacteria (Table 1). Good inhibitory effect was showed: cefotaksim, ofloksacin, azitromicin and tetraciklin, while amikacin, cefuroksim, gentamicin, eritromicin, penicilin, hloramfenikol, neomicin and vankomicin showed different effect depending on microorganism.

The influence of Oleum Hyperici on the growth of Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa were showed in Table 2.

Table 2. Growth inhibition zone of Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa after treatment with Oleum Hyperici

<table>
<thead>
<tr>
<th>Zone of inhibition in mm*</th>
<th>Staphylococcus aureus</th>
<th>Salmonella typhimurium</th>
<th>Pseudomonas aeruginosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oleum Hyperici</td>
<td>4</td>
<td>0</td>
<td>3.33</td>
</tr>
<tr>
<td>Oleum Hyperici: ethanol 1:1</td>
<td>1.66</td>
<td>0</td>
<td>1.66</td>
</tr>
<tr>
<td>Oleum Hyperici: ethanol 2:1</td>
<td>2.66</td>
<td>0</td>
<td>6.66</td>
</tr>
<tr>
<td>Oleum Hyperici: Olive oil 1:2</td>
<td>4</td>
<td>0</td>
<td>16.66</td>
</tr>
<tr>
<td>Oleum Hyperici: Olive oil 1:5</td>
<td>2.33</td>
<td>0</td>
<td>20.00</td>
</tr>
<tr>
<td>Oleum Hyperici: Olive oil 1:10</td>
<td>2</td>
<td>0</td>
<td>23.33</td>
</tr>
</tbody>
</table>

* The showed values are mean values (in mm) of three repetition for inhibition zone

Results showed that Oleum Hyperici (diluted with olive oil) has good antimicrobial effect on the growth of Pseudomonas aeruginosa, while weak effect was observed with pure Oleum Hyperici and also diluted with ethanol (1:1 and 2:1).
These results agree with the previously reported results about antimicrobial properties of *Hypericum perforatum* (Gibson 2004, Saddige 2010, Gudžić et al 2001., Fox et all 2001, Šmelcerović et al 1998).

Oleum Hyperici had showed very weak inhibitory effect on growth of *Staphylococcus aureus*, but in our investigation, *Oleum Hyperici* in all combination did not show inhibitory effect on growth of *Salmonella typhimurium*.

There is no clear evidence about antimicrobial activity of essential oil, due to very different antimicrobial activity of essential oil on different testing microorganism, so it is difficult to determine correlation between antibacterial activity of essential oil and its main chemical compounds (Cavanagh, Wilkinson, 2005).

Furthermore, there is a difference between antimicrobial activities of essential oil and separate chemical compounds (Delaquis et al 2002).

Inhibitory activity of essential oil is a result of combined effects of active and nonactive oil compounds, which can induce additive, synergistic or antagonistic influence on antimicrobial activity of oil (Xianfei et al 2007).

Based on obtained results, *Oleum Hyperici* showed good inhibitory effect on the growth of the *Pseudomonas aeruginosa*, thus it is suggested for use in pharmaceutics industry for preventing diseases caused by *Pseudomonas aeruginosa*.

Bactericidal effect in all combination of *Oleum Hyperici* was found for *Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa*, while bacteriostatic effects for *Pseudomonas aeruginosa*, respectively.

Conclusion

1. Results are showed that *Oleum Hyperici* showed antimicrobial activity on the growth of *Pseudomonas aeruginosa* and *Staphylococcus aureus*. There is a difference between antimicrobial activity of *Hypericum p.* essential oil in depending of type of microorganism and used thinner.
2. *Oleum Hyperici* showed inhibitory effect on the growth of *Salmonella typhimurium*
3. *Oleum Hyperici* showed bactericidal effect on growth of *Staphylococcus aureus* and bacteriostatic on *Pseudomonas aeruginosa*.

The knowledge obtained from this study could be applied for the development of novel formulation for *Oleum Hyperici* and its wider application in food industry, and thus preventing the consumers from poisoning spread by these pathogens.
Literatura

National Committee for Clinical Laboratory Standard, Wayne, PA, USA.

Recieved: 10.04.2015.
Accepted: 04.12.2015.